
Machine Learning and Climate

Spring 2025

Instructor
Alp Kucukelbir <alp@cs.columbia.edu>

Day & time
Mondays 4:10pm – 6:00pm

Location
TBD

Course assistant(s)
(to be approved)

• Nicolas Beltran <nb2838@columbia.edu>

Description
In this course, we will study two aspects of how machine learning (ml) interacts with Earth’s
climate.

First, we will establish how ml can monitor climate change. We will study how ml can be
used to monitor greenhouse gas emissions, forecast how nature is changing, and improve
our understanding of climate systems. We will ask questions like: How does monitoring
differ from forecasting? What kind of machine learning techniques allow us to draw causal
insights?

Second, we will investigate how ml can mitigate climate change. We will focus on industries
with large carbon footprints such as power systems, manufacturing, and buildings. We will
ask questions like: What are the requirements for applying ml to such problems? How can
we evaluate the effectiveness of ml in these domains?

Last, we will consider ml’s own impact on the climate. We will focus on the energy and
computation that goes into designing, training, and deploying modern ml systems. We will
ask questions like: How can we accurately track and account for ml’s own energy footprint?
What strategies can we employ to minimize it?

By the end of this course, you will learn about modern statistical, generative, and causal
ml methods and their applications to the climate. Our focus will be the modeling of real-
world phenomena using probability models, with a focus on image processing, time series
forecasting, uncertainty quantification, and causality. In addition, you will gain a deeper
understanding about the carbon footprint of ml itself and explore how to minimize it.
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Prerequisites
This is a graduate-level COMS 6998 course. The class is open to select technical senior
undergraduate, masters, and doctoral students; no auditors and no pass/fail.

You must be familiar with machine learning and statistics (for example, you took a class
where you learned how to do data analysis using modern ml methods). You will be
conducting independent data analysis in this course; as such, you must be comfortable
programming in python, working with git, and writing in LaTeX.

You should have a good climate-related dataset in hand. This may be a dataset published
alongside a relevant paper, or a dataset that hasn’t been used for ml research yet. If you
do not have a dataset readily available, you should have a strategy for simulating data for a
relevant use case.

Here are a few resources for climate-related projects:
• Climate Change ai
• Kasia Kulma’s GitHub Repository
• Carbon Plan
• Carbon Monitor
• Björn Lütjens’s GitHub Repository

Structure
This course is based around an project that you will summarize in a final technical paper.
Based on the number of students taking the course for credit, you will work either in groups
of two or three. You will be expected to present a relevant use case of either ml’s application
to the climate or a study of ml’s own carbon footprint. Your final paper must contain
some form of data analysis using ml and will be accompanied by a GitHub repository with
python code. Each student within a group will receive an individual grade, corresponding
to their involvement in the project.

Each class is split into two. In the first part, I will lecture on the topic of the week. In the
second part, we will discuss the readings. The discussion will focus on key insights from the
readings and how they related to your ongoing projects.

The last class is dedicated to project presentations. Each group will record a short video over
2 slides, summarizing the state of their project so far. This is an opportunity to get feedback
and to see what your peers have been working on. The final paper will be due at the end of
the semester.

Readings
There is no textbook for this course. For context and background, we will closely follow
these sources:

• Sandalow, D. B., McCormick, C., Kucukelbir, A., Friedmann, J., Nagrani, T., Fan, Z.,
Halff, A. M., d'Aspremont, A., Glatt, R., Méndez Leal, E., & others. (2024). Artificial
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Intelligence for Climate Change Mitigation Roadmap (Second Edition). ICEF Innova-
tion Roadmap Project. https://transitiondigital.org/ai-climate-roadmap

• Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D.
(2022). Aligning artificial intelligence with climate change mitigation. Nature Climate
Change, 1–10.

Each week’s session has additional readings that provide the foundation necessary for
understanding and exploring the ml technique in consideration.

Course Grade
You are graded on completing weekly response to the readings and participation in the class.
There are three problem sets. Your course grade will be calculated as follows.

Component Percentage
Weekly responses to the readings 10 %
Participation in class 20 %
Problem sets 20 %
Final paper 50 %

Your weekly responses are graded solely on submitting on time. We will score your
responses as −1 for “below expectations”, 0 for “meets expectations”, and +1 for “exceeds
expectations”. These scores are simply meant to help you calibrate your engagement with
the material.

There are three problem sets for this class, each due three weeks apart. These problem
sets assess how well you are following the topics discussed in the sessions; they comprise
climate questions about the industries we are studying and technical questions about the
ml methods applied to them.

Your final paper will be evaluated for its relevance to the course material, technical correct-
ness, and writing quality. There is no expectation to have a positive result in your data
analysis by the end of the class; it is perfectly acceptable to reach a negative conclusion (e.g.,
such and such technique is not as good as the state of the art in forecasting water usage) as
a result of your exploration.

Your final paper should be at most 8 pages long and prepared with the course LaTeX
template. This is inclusive of images, tables, and bibliography.

Final Project
Each group will work on a project, summarized in a final technical paper. You will showcase
and document your work through a private GitHub repository.

Please organize your repository as follows:
• abstract.md
• journal.md
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• doc/
• src/
• etc/

This repository will document your exploration and coding through the semester.

The file abstract.md simply contains an abstract of the project. At first, it is an aspirational
abstract, one that describes the research program you want to complete. You will refine it
through the semester.

The file journal.md is a diary of your progress. It contains dated entries with a description
of what you are doing, what you found, what you are thinking, and so on. It is mainly a
resource for you, but I will glance at it too (at the end of the semester). Please update and
commit it at least once per week.

The doc/ directory contains the LaTeX document that you are writing. We will provide a
template for your final paper.

The src/ directory contains the code you are writing. The data you are analyzing should
live here too.

The etc/ directory contains anything else — materials, notes, photos of whiteboards, and
so on — that you want to keep track of.

There should be nothing else in the top level directory of your repository.

Commit often, at least every week to provide an update to your journal. You are graded on
the quality of the project and the path that you took to get there.

Course outline begins on the following page
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Course Outline
Each week’s readings should take you no more than two hours. Suggested readings are
suggestions — enjoy them either if you need more background or seek deeper context.

Week 1 | Introduction to climate change mitigation (ccm)
How can we think about mitigating climate change? How do we study climate change? A
primer on relevant topics:

• Monitoring emissions
• Climate event attribution
• Earth system modeling
• Biodiversity forecasting

How do different economic industries contribute to climate change? A primer on industries
with large carbon footprints:

• Power systems
• Food systems
• Manufacturing
• Transportation
• Buildings

How can machine learning (ml) mitigate these contributions? What are common themes
of how ml can make a difference? What are the primary barriers and risks of deploying ml
to mitigate climate change?

Required readings
• What is climate change and how can it be mitigated? → (Sandalow et al., 2024, Ch. 2)
• Aligning ml and ccm → (Kaack et al., 2022)

Suggested readings
• Overview on ccm → (Gates, 2021)

Week 2 | Monitoring emissions
Detection and monitoring of methane super-emitters using infrared photography and
satellite data. Convolutional neural networks for detection of plume-like structures, and
support vector classification to distinguish real methane plumes from retrieval artifacts.

Technical topic | Convolutional neural networks.

Logistics | Problem Set 1 out, due on Week 5.

Required readings
• Greenhouse gas monitoring → (Sandalow et al., 2024, Ch. 12)
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• Infrared imagery → (Wang et al., 2020)
• Satellite paper → (Schuit et al., 2023)

Suggested readings
• Convolutional neural networks primer → (Vedaldi, 2019)

Week 3 | Biodiversity forecasting
Comparison of correlative and causal modeling approaches to predict current and future
distributions of biodiversity. Projecting future distributions under climate change scenar-
ios. An application to animals in geographies subject to climate change.

Technical topic | Predictive vs. causal models.

Required readings
• Forecasting biodiversity → (Sirén et al., 2022)
• Counterfactual analysis → (Pearl et al., 2016, Ch. 1 and 2)

Suggested readings
• Primer on causal analysis → (Pearl & Mackenzie, 2018)

Week 4 | Climate event attribution
What causes heatwaves? Causal counterfactual theory and how it can be applied to the attri-
bution of weather and climate-related events. Difference between necessary and sufficient
causality, and how they can be quantified using probabilities. Illustration on a case study
on the 2003 European heatwave.

Technical topic | Counterfactual analysis using data.

Required readings
• Heatwave analysis paper → (Hannart et al., 2016)
• Counterfactual analysis → (Pearl et al., 2016, Ch. 3)

Suggested readings
• Primer on causal analysis → (Pearl & Mackenzie, 2018)

Week 5 | Earth system modeling
Challenges of applying causal inference methods to large-scale complex dynamical systems
like the Earth system, where real experiments are often infeasible. Causal hypothesis testing,
causal network analysis, exploratory causal driver detection, and causal evaluation of phys-
ical models.
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Technical topic | Granger causality, structural causal discovery.

Logistics | Problem Set 1 due. Problem Set 2 out, due on Week 8.

Required readings
• Causal inference for Earth systems → (Runge et al., 2019)

Suggested readings
• Primer on causal analysis → (Pearl & Mackenzie, 2018)

Week 6 | Power systems
Power flow optimization. A neural network-based method for solving optimization prob-
lems with hard constraints. Application to a variety of convex and non-convex optimization
tasks, including an ac optimal power flow problem.

Technical topic | ml approaches to non-convex optimization with constraints.

Required readings
• ac power flow paper → (Donti et al., 2021)
• ml for power systems → (Sandalow et al., 2024, Ch. 3)

Suggested readings
• ml applications within power systems → (Donti & Kolter, 2021)

Week 7 | Manufacturing
ml applications to enable material circularity by adapting to volatility better. An application
of Bayesian optimization to reduce the number of experiments. Illustration of a closed-loop
optimization to efficiently optimize fast-charging protocols for lithium-ion batteries.

Technical topic | Bayesian optimization.

Required readings
• ml for manufacturing → (Sandalow et al., 2024, Ch. 5)
• ml battery charging protocols → (Attia et al., 2020)

Suggested readings
• Primer on Bayesian optimization → (Shahriari et al., 2015)
• Textbook on Bayesian optimization → (Garnett, 2023)
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Week 8 | Advanced manufacturing
Bayesian optimization for tackling complex, expensive-to-evaluate applications to mitigate
climate change. Three key application in advanced manufacturing: material discovery, wind
farm layout, and optimal renewable control. Importance of benchmarking data and what
it takes to advance the field of research in new domains.

Technical topic | Bayesian optimization.

Logistics | Problem Set 2 due. Problem Set 3 out, due on Week 11.

Required readings
• Bayesian optimization for climate application → (Hellan et al., 2023)

Suggested readings
• Primer on Bayesian optimization → (Shahriari et al., 2015)
• Textbook on Bayesian optimization → (Garnett, 2023)

Week 9 | Buildings
ml applications to the life-cycle of buildings, from design to construction, from operations
to demolition. Simulation-based reinforcement learning for optimization of energy and
emissions in office buildings.

Technical topic | Reinforcement learning.

Required readings
• ml for buildings → (Sandalow et al., 2024, Ch. 8)
• ml in energy efficient buildings → (Goldfeder & Sipple, 2024)

Suggested readings
• Reinforcement learning primer → (Lei, 2021)

Week 10 | Computational material science
Diffusion models for reconstruction of real-world microstructure data. Additional ideas
around 2D-to-3D reconstruction and applications to multiscale modeling and structure-
property linkages.

Technical topic | Diffusion models.

Required readings
• ml for material science → (Sandalow et al., 2024, Ch. 13)
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• Diffusion for new materials → (Düreth et al., 2023)

Suggested readings
• A primer on diffusion models → (Luo, 2022)

Week 11 | The carbon footprint of ml
What is the carbon emissions associated with training machine learning (ml) models? How
does the energy source used to power the hardware for training affect emissions? Does
higher emissions lead to better model performance? How do we improve transparency and
accountability in the field?

Technical topic | Carbon footprint quantification.

Logistics | Problem Set 3 due.

Required readings
• Carbon footprint of ml → (Strubell et al., 2020)
• Carbon footprint of ml → (Lacoste et al., 2019)
• Carbon footprint of ml → (Henderson et al., 2020)
• Carbon footprint of ml → (Luccioni & Hernandez-Garcia, 2023)

Suggested readings
• Cabon footprint of ai → (Sandalow et al., 2024, Ch. 15)

Week 12 | Can ml make climate change worse?
Why is ml progressing so quickly? Are there ways in which ml can make climate change
worse? An illustration of risks across a broad set of applications, from manufacturing to
disinformation campaigns. A particular focus on large language model usage risks.

Technical topic | Large language models.

Required readings
• Why ml is progessing so quickly? → (Donoho, 2024)
• Can ml make climate change worse? → (Kaack et al., 2022)
• Risks → (Sandalow et al., 2024, Ch. 16.C)
• LLMs → (Sandalow et al., 2024, Ch. 11)

Week 13 | Final presentations
Projects presentations and discussion.
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Additional recommended readings
• Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K.,

Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., & others. (2019).
Tackling climate change with machine learning. Arxiv Preprint Arxiv:1906.05433.

• Gentine, P., List, G., Thompson, K., Pardo, T., Li, X., Berg, G., & Bennett, L. (2024).
ai for Climate and Nature: Landscape Assessment.
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